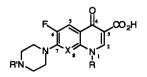
A Practical Route to C-8 Substituted Fluoroquinolones

Juan C. Carretero*, José L. García Ruano* and Mercedes Vicioso

Departamento de Química (C-I). Facultad de Ciencias. Universidad Autónoma de Madrid. Cantoblanco 28049 Madrid. Spain

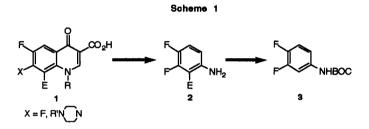

(Received in UK 7 July 1992)

Key words: fluoroquinolones, quinolones, ortho metalation, substituted anilines

Abstract: The ortho metalation of N-(tert-butoxycarbonyl)-3,4-difluoroaniline, with t-BuLi at -78°C in THF occured regioselectively at C-2 position. The resulting lithiated species reacted with a variety of electrophiles to give 2-substituted-3,4-difluoroanilines in good yields after hydrolysis. These compounds have been readily transformed into C-8 substituted fluoroquinolones. The nucleophilic substitution at C-7 by piperazines and the alkylation at N-1 on these quinolones have also been performed.

Introduction

In recent years, many molecular modifications of the parent structures of quinolones have been carried out in order to develop agents with higher potency and broader bacterial coverage¹. In fact, almost all clinically useful quinolones bear a fluorine atom at the C-6 position and a nitrogen heterocycle, usually a piperazine ring, at the C-7 position. These antibacterial agents, generally known as fluoroquinolones, are now a major class of antiinfectives with significant potential for continued development². Notable examples are Norfloxacin, Pefloxacin, Enoxacin, Ciprofloxacin, Amifloxacin, Ofloxacin and Fleroxacin (Figure 1).



	х	R	R'
Norfloxacin	сн	CH ₂ CH ₃	н
Perfloxacin	сн	CH ₂ CH ₃	СН3
Enoxacin	N	CH ₂ CH ₃	н
Ciprofloxacin	сн	c-C ₃ H ₅	н
Amifloxacin	сн	NHCH3	СН ₃
Fleroxacin	CF	CH ₂ CH ₂ F	Сн₃
Ofloxacin	Ŷ	↓сн₃	СН₃

Figure 1. Clinically significant quinolone antibacterials

In order to perform wider structure-activity studies, the development of general synthetic methods for the preparation of differently substituted quinolones is highly desirable. We wish to report herein a general method of synthesis of fluoroquinolones substituted at the C-8 position from commercially available 3,4difluoroaniline. This starting material is currently used for the preparation of some important C-8 unsubstituted quinolones such as Pefloxacin and Norfloxacin.

Scheme 1 briefly shows our retrosynthetic plan. It was expected that C-8 substituted quinolones 1 would be easily prepared from 2-substituted-3,4-difluoroanilines 2 according to the Gould-Jacobs reaction sequence³ for the construction of the quinolone ring. This sequence involves condensation with diethyl ethoxymethylenemalonate and intramolecular Friedel-Crafts acylation as the main steps. An attractive general route to the synthesis of the key intermediates 2 would be the regioselective C-2 ortho metalation⁴ of the N-BOC derivative of 3,4-difluoroaniline (3) and its further reaction with electrophiles. This approach would be based on the cooperative metalation effects of the strong ortho directing NHBOC group⁵ and the weaker ortho directing ability of F^{6} .

Results and Discussion

The required compound, N-(*tert*-butoxycarbonyl)-3,4-difluoroaniline (3), was readily prepared by reaction of 3,4-difluroaniline with di-*tert*-butyl dicarbonate in refluxing THF (97% yield). When a solution of 3 in THF was treated with 2.2 equiv. of *t*-BuLi at -78°C for 1 h a pale yellow solution was formed that after quenching with an excess of D₂O gave regioselectively and quantitatively the deuterated compound **5a** (Table 1, entry a). This result shows that under these conditions⁷ a complete ortho deprotonation occurs at C-2 with subsequent formation of the metalated anion 4. This carbanion also reacted, under very mild conditions, with a wide variety of electrophiles, such as 1,2-dibromoethane⁸ (entry b), methyl disulfide (entry c), MeI (entry d), DMF (entry e), acetaldehyde (entry f) and cyclohexanone (entry g) to give the expected products **5**. Excellent yields were obtained after chromatography (78-94%). In all cases the reaction was highly regioselective (the C-6 substituted isomers were not detected by ¹H NMR). On the other hand, when dianion **4** was quenched with acetaldehyde or cyclohexanone and the reaction mixture was left at room temperature overnight, cyclization of the primary product (**5f** or **5g**) occurred spontaneously to give the benzoxazinone derivative **6** in good yield (Scheme 2).

With C-2 substituted carbamates 5 in hand we undertook their transformation into C-8 substituted quinolones 1. The overall sequence from compounds 5c, 5d and 5h (the latter obtained by reduction of 5e with NaBH4) is depicted in Scheme 3. Acid deprotection of BOC-derivatives 5 (HCl, Et₂O, reflux) afforded the substituted fluoroanilines 2 (80-87% yield) whose condensation with diethyl ethoxymethylenemalonate, at

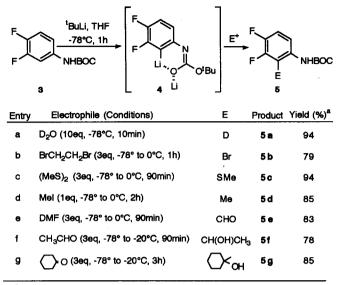
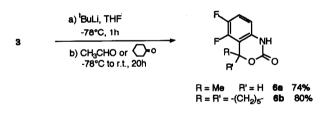
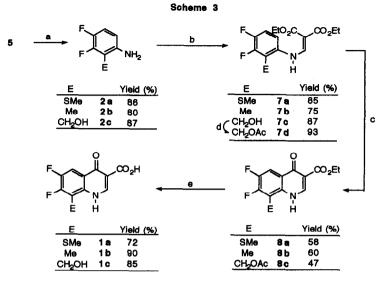
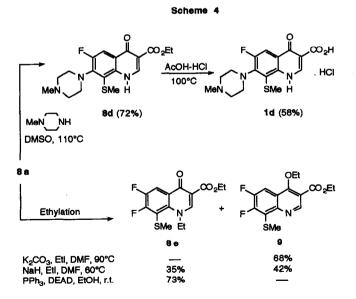



Table 1: Regioselective preparation of N-BOC-2-substituted-3,4-difluoroanilines 5


^a Yield in pure isolated product after chromatography.

Scheme 2


110°C, gave enamines 7 in good yields (75-87%). Intramolecular acylation of 7a, 7b and 7d (the alcohol 7c was protected as its acetate 7d) by heating at 220°C in diphenyl ether³ led to the formation of ethyl 4oxoquinoline-3-carboxylic esters 8 (47-60% yield) which were hydrolyzed under basic conditions (NaOH, 100°C) to the corresponding free carboxylic acids (quinolones 1, 72-90% yield).

Finally, we attempted nucleophilic substitution at C-7 and alkylation at N-1 in order to achieve the usual pattern of substitution of quinolone antibacterials (Figure 1). However, the nucleophilic substitution of fluorine at C-7 position by different piperazines⁹ was not successful on quinolones 1. Fortunately, satisfactory results were obtained when these reactions were carried out starting from their ethyl esters precursors 8 (Scheme 4). Thus, the reaction of 8a with N-methyl piperazine in DMSO at 110°C yielded exclusively the C-7 substituted compound 8d (72%), which was hydrolyzed in acid conditions (HCl, AcOH, 100°C) to afford the 7-piperazinyl quinolone 1d (58%). Regarding the alkylation at N-1 position we observed a competition between N- and O-ethylation in quinolone 8a, which was very dependent on the nature of the base and the ethylating agent. For instance, whereas ethylation of 8a with K₂CO₃/EtI in DMF¹⁰ at 90°C for 5 days gave exclusively

(a) HCl (c), Et₂O, r.t.; (b) EtOCH≃C(CO₂Et)₂, 110°C; (c) Ph₂O, 220°C; (d) Ac₂O, Py, r.t.; (e) NaOH, EtOH-H₂O, 100°C.

the O-ethylated quinoline 9 in 68% yield (20% of unreacted 8a was recovered), its ethylation with PPh₃/DEAD/EtOH in CH₂Cl₂ at r.t. gave selectively the N-ethylated quinolone 8e in good yield (73% after purification). An intermediate situation was observed when 8a was ethylated with NaH/EtI in DMF, under these conditions 35% of 8e and 42% of 9 were obtained after chromatography.

In summary, the ortho metalation of N-BOC-3,4-difluoroaniline with t-BuLi in THF at -78°C is completely regioselective. The C-2 substituted N-BOC anilines 5, obtained after reaction with electrophiles, can be readily applied to the synthesis of a wide range of C-8 substituted fluoroquinolones.

Experimental Section

Melting points are uncorrected. IR spectra were recorded as thin films from CHCl₃ or nujol (only strong absortions are reported. ¹H NMR spectra were taken at 200 MHz, on a Bruker WP-200-SY, in the solvents indicated. High resolution mass spectra were recorded under e.i. at 70 eV. All reagents or solvents were used as comercial grades, except THF which was distilled from Na/benzophenone and DMF which was distilled from CaH₂. Flash column chromatography was performed on silica gel Merck-60 (230-430 mesh).

N-(*tert*-**butoxycarbonyl)-3,4-difluoroaniline** (3). A solution of 1.30 g (10.1 mmol) of 3,4difluoroaniline and 2.42 g (11.1 mmol) of di-*tert*-butyldicarbonate in 10 ml of dry THF was heated at 60°C for 15 h. The solvent was removed in vacuo and the residue was dissolved in 15 ml of ethyl acetate. The solution was washed successively with 1 % HCl (2 x 10 ml) and 5 % NaHCO₃ (2 x 10 ml). The organic layer was dried (MgSO₄) and evaporated in vacuo. The residue was recrystallized from hexane to give 2.24 g (97%) of carbamate **3**, m.p.135-137°C; ¹H NMR (CDCl₃) δ : 7.43 (ddd, 1H, J = 12.3, 7.5 and 2.6 Hz, ArH), 7.05 (m, 1H, ArH), 6.90 (m, 1H, ArH), 6.48 (broad s, 1H, NH), 1.52 (s, 9H, ^tBu); IR (nujol) 3300, 2880, 2800, 1690, 1610, 1430, 1390, 1370, 1290, 1170; MS *m/e* 229 (M⁺, 10), 173 (37), 129 (43), 101 (13), 86 (18), 84 (22), 59 (20), 57 (100); Anal. Calcd. for C₁₁H₁₃F₂NO₂: C, 57.64; H, 5.67; N, 6.11. Found: C, 57.63; H, 5.56; N, 6.06.

General procedure for dilithiation of 3 and further reaction with electrophiles. A 1.6 M solution of *tert*-butyllithium in hexane (22.5 ml, 33.0 mmol) was added slowly to a solution of 3 (3.43 g, 15.0 mmol) in dry THF (40 ml) maintained at -78°C under argon. After 1 h at -78°C the appropriate electrophilic reagent was added and the solution was allowed to warm to the temperature for the reaction time indicated in Table 1. Then, saturated NH₄Cl (15 ml) was added and the mixture was extracted with CH₂Cl₂ (3 x 15 ml). The combined organic layers were dried (MgSO₄) and evaporated to give crude products **5a-g** which were purified by flash chromatography.

2-Deutero-3,4-difluoro-N-(*tert*-butoxycarbonyl)aniline (5a). 3.24 g, 94 % (eluent: hexane/ethyl acetate 6/1), m.p.124-126°C; ¹H NMR (CDCl₃) δ : 7.05 (m, 1H, ArH), 6.9 (ddd, 1H, J = 8.6, 4.3 and 1.4 Hz, ArH), 6.48 (broad s, 1H, NH), 1.51 (s, 9H, 'Bu); IR (nujol) 3300, 2880, 2800, 1690, 1610, 1430, 1390, 1370, 1290, 1170; Anal. Calcd. for C₁₁H₁₂DF₂NO₂: C, 57.39; H, 6.09; N, 6.09. Found: C, 57.42; N, 5.65; N, 6.27.

2-Bromo-3,4-difluoro-N-(*tert*-butoxycarbonyl)aniline (5b). 3.06 g, 66% (eluent: hexane/ethyl acetate 30/1), m.p.56-57°C; ¹H NMR (CDCl₃) δ : 7.29 (ddd, 1H, J = 9.4, 4.6 and 2.3 Hz, ArH), 7.12 (m, 1H, ArH), 6.88 (broad s, 1H, NH), 1.53 (s, 9H, 'Bu); IR (nujol) 3340, 2950, 2840, 1745, 1700, 1590, 1510, 1400, 1370, 1270, 1150; Anal. Calcd. for C₁₁H₁₂BrF₂NO₂: C, 42.85; H, 4.05; N, 4.51. Found: C, 42.86; H, 4.22; N, 4.54.

3,4-Difluoro-2-methylthio-N-(*tert***-butoxycarbonyl)aniline** (5c). 3.88 g, 94% (eluent: hexane/ethyl acetate 25/1), m.p.53-54°C; ¹H NMR (CDCl₃) δ: 7.95 (ddd, 1H, J = 9.2, 4.6 and 1.9 Hz, ArH), 7.75 (broad s, 1H, NH), 7.12 (m, 1H, ArH), 2.36 (s 3H, SCH₃) 1.53 (s, 9H, ^tBu); IR (nujol) 3360, 2910, 2840, 1730,

1700, 1580, 1500, 1450, 1390, 1270, 1220, 1160; MS m/e 275 (M⁺, 32), 202 (30), 175 (81), 160 (60), 57 (100); HRMS Calcd. for C₁₂H₁₅F₂NO₂S 275.0791. Found 275.0793.

3,4-Difluoro-2-methyl-N-(*tert*-butoxycarbonyl)aniline (5d). 3.10 g, 85% (eluent: hexane/ethyl acetate 20/1), m.p.97-98°C; ¹H NMR (CDCl₃) δ : 7.30 (m, 1H, ArH), 6.96 (m, 1H, ArH), 6.19 (broad s, 1H, NH), 2.19 (d, 3H, J = 2.6 Hz, CH3), 1.51 (s, 9H, ¹Bu); IR (nujol) 3340, 2945, 2850, 1650, 1510, 1500, 1440, 1370, 1290, 1250, 1150; Anal. Calcd. for C₁₂H₁₅F₂NO₂: C, 59.26; H, 6.17; N, 5.76. Found: C, 59.42; H, 6.04; N, 5.74.

2,3-Difluoro-6-(*tert*-butoxycarbamoyl)benzaldehyde (5e). 3.20 g, 83% (eluent: hexane/ethyl acetate 20/1), m.p.130-131°C; ¹H NMR (CDCl₃) δ : 10.42 (broad s, 1H, NH), 10.39 (s, 1H, CHO), 8.25 (ddd, 1H, J = 9.5, 4.2 and 2.1 Hz, ArH), 7.40 (m, 1H, ArH), 1.55 (s, 9H, ⁴Bu); IR (nujol) 3285, 2940, 2840, 1730, 1670, 1660, 1595, 1370, 1300, 1240, 1210, 1170; MS *m/e* 257 (M⁺, 8), 201 (18), 184 (12), 157 (29), 129 (30), 86 (34), 84 (57), 69 (11), 57 (100); Anal. Calcd. for C₁₂H₁₃F₂NO₃: C, 56.03; H, 5.58; N, 5.45. Found: C, 55.89; H, 5.86; N, 5.47.

3,4-Difluoro-2-(1-hydroxyethyl)-N-(*tert***-butoxycarbonyl)aniline** (**5f**). 3.19 g, 78% (eluent: hexane/CH₂Cl₂ 2/1), m.p.114-115°C; ¹H NMR (CDCl₃) δ : 8.47(broad s, 1H, NH), 7.71 (ddd, 1H, J = 9.2, 4.1 and 1.6 Hz, ArH), 6.96 (m, 1H, ArH), 5.47 (q, 1H, J = 6.7 Hz, CHOH), 2.49 (broad s, 1H, OH), 1.55 (d, 3H, J = 6.7 Hz, CH₃) and 1.51 (s, 9H, ¹Bu); IR (nujol) 3410, 3310, 2930, 2840, 1690, 1600, 1530, 1415, 1360, 1270, 1160; MS m/e 327 (M⁺, 16), 271 (65), 253 (86), 236 (21), 227(34), 209 (100), 180 (36), 166 (80); HRMS Calcd. for C_{13H17}F₂NO₃ 273.1176. Found 273.1172.

3,4-Difluoro-2-(1-hydroxycyclohexyl)-N-(*tert***-butoxycarbonyl)aniline** (**5g**). 4.17 g, 85% (eluent: hexane/CH₂Cl₂ 2/1), m.p.156-157°C; ¹H NMR (CDCl₃) δ : 9.51 (broad s, 1H, NH), 7.82 (ddd, 1H, J = 9.3, 5.1 and 2.3 Hz, ArH), 7.00 (m, 1H, ArH), 2.30-1.25 (m, 10H, cyclohexyl), 1.59 (s, 9H, ¹Bu); IR (nujol) 3405, 3240, 2920, 2840, 1675, 1595, 1500, 1400, 1360, 1270, 1160; MS *m/e* 273 (M⁺, 22), 217 (68), 199 (12), 182 (45), 173 (40), 155 (100), 127 (19), 69 (16), 57 (40); HRMS Calcd. for C₁₇H₂₃F₂NO₃ 327.1646. Found 327.1649.

General procedure for the preparation of trisubstituted anilines 2. Concentrated HCl (20 ml) was added to a solution of the corresponding carbamate 5 (4.17 mmol) in Et₂O (42 ml) and the resulting mixture was vigorously stirred at room temperature for 40 min.-17h. 2M NaOH was added until pH>10 and the mixture was extracted with Et₂O (3 x 15 ml). The combined organic layers were washed with H₂O (2 x 10 ml), dried (Na₂SO₄) and evaporated. As soon as the crude anilines 2 were purified by chromatography (hexane/ethyl acetate 1/2 as eluent) they were used in the following reaction due to their limited stability.

3,4-Difluoro-2-methylthioaniline (**2a**). 628 mg, 86% (reaction time: 17 h); ¹H NMR (CDCl₃) δ: 6.93 (m, 1H, ArH), 6.42 (ddd, 1H, J = 9.1, 4.1 and 2.0 Hz, ArH), 4.29 (broad s, 2H, NH₂), 2.32 (s, 3H, SCH₃). **3,4-Difluro-2-methylaniline** (**2b**). 476 mg, 80% (reaction time: 40 min); ¹H NMR (CDCl₃) δ: 6.80 (m, 1H, ArH), 6.35 (m, 1H, ArH), 3.55 (broad s, 2H, NH₂), 2.10 (d, 3H, J = 2.1 Hz, CH₃).

3,4-Difluoro-2-hydroxymethylaniline (2c). 577 mg, 87% (reaction time: 40 min); ¹H NMR (CDCl₃) δ : 6.92 (m, 1H, ArH), 6.38 (ddd, 1H, J = 8.4, 3.8 and 2.1 Hz, ArH) 4.75 (d, 2H, J = 2.0 Hz, CH₂OH) 3.5-2.5 (broad s, 3H, NH₂ and OH).

General procedure for the preparation of methylenemalonates 7. A mixture of diethyl ethoxymethylenemalonate (10.64 ml, 3.18 mmol) and aniline 2 (3.18 mmol) was heated at 110°C. After 2 h the mixture was cooled to room temperature and hexane (10 ml) was added. The resulting precipitate was filtered

off, washed with hexane, and dried. This crude malonate 7 was used in the following reaction without further purification.

Diethyl (3,4-difluoro-2-methylthioanilinyl)methylenemalonate (7a). 0.93 g, 85% (reaction time: 2.30 h), m.p.88-89°C; ¹H NMR (CDCl₃) δ : 11.54 (d, 1H, J = 13.7 Hz, NH), 8.47 (d, 1H, J = 13.7 Hz, HC=C), 7.20 (m, 1H, ArH), 7.01 (ddd, 1H, J = 9.3, 4.1 and 1.8 Hz, ArH), 4.35 (q, 2H, J = 7.1 Hz, CH₂), 4.26 (q, 2H, J = 7.1 Hz, CH₂), 2.43 (s, 3H, SCH₃), 1.39 (t, 3H, J = 7.1 Hz, CH₃), 1.34 (t, 3H, J = 7.1 Hz, CH₃); IR (nujol) 2910, 2840, 1665, 1630, 1580, 1440, 1390, 1285, 1250, 970, 880, 790; Anal. Calcd. for C₁₅H₁₇F₂NO₄S: C, 52.03; H, 4.92; N, 4.11. Found: C, 52.17; H, 4.93; N, 4.05.

Diethyl (3,4-difluoro-2-methylanilinyl)methylenemalonate (7b). 0.75 g, 75% (reaction time: 1.30 h), m.p. 103-104°C; ¹H NMR (CDCl₃) δ : 11.10 (d, 1H, J =13.1 Hz, NH), 8.41 (d, 1H, J = 13.1 Hz, HC=C), 7.07 (m, 1H, ArH), 6.94 (ddd, 1H, J = 9.1, 4.2 and 1.6 Hz ArH), 4.32 (q, 2H, J = 7.1Hz, CH₂), 4.25 (q, 2H, J = 7.1 HZ, CH₂), 2.31 (d, 2H, J = 2.2 Hz, CH₃), 1.39 (t, 3H, J = 7.1 Hz, CH₃), 1.33 (t, 3H, J = 7.1 Hz, CH₃); IR (nujol) 2910, 2840, 1670, 1630, 1600, 1460, 1380, 1250, 1090, 1020, 1000, 790; Anal. Calcd. for C₁₅H₁₇F₂NO₄: C, 57.61; H, 5.44; N, 4.38. Found C, 57.51; H, 5.43; N, 4.47.

Diethyl (3,4-difluoro-2-hydroxymethylanilinyl)methylenemalonate (7c). 0.91 g, 87% (reaction time: 1 h), m.p.133-134°C; ¹H NMR (CDCl₃) δ : 11.49 (d, 1H, J= 13.5 Hz, NH), 8.40 (d, 1H, J = 13.5 Hz, HC=C), 7.18 (m, 1H, ArH), 7.01 (ddd, 1H, J = 9.0, 3.9 and 1.8 Hz, ArH), 4.87 (d, 2H, J = 2.1 Hz, CH₂OH), 4.31 (q, 2H, J = 7.0 Hz, CH₂), 4.25 (q, 2H, J = 7.0 Hz, CH₂), 2.85 (broad s, 1H, OH), 1.37 (t, 3H, J = 7.0 Hz, CH₃), 1.33 (t, 3H, J = 7.0 Hz, CH₃); IR (nujol) 3360, 2910, 2840, 1670, 1630, 1580, 1450, 1400, 1285, 1250, 1110, 970, 790; Anal. Calcd. for C₁₅H₁₇F₂NO₅: C, 54.63; H, 5.16; N, 4.12. Found: C, 54.71; H, 5.17; N, 4.25.

Diethyl (2-acetoxymethyl-3,4-difluoroanilinyl)methylenemalonate (7d). To a solution of 1.23 g (3.75 mmol) of 7c in 1.25 ml (15.00 mmol) of pyridine was added at room temperature 0.35 ml (3.75 mmol) of acetic anhydride. The resulting mixture was stirred for 90 minutes, then a solution of 10% HCl was added until pH 2-3. The mixture was extracted with CH₂Cl₂ (3 x 5 ml), the combined organic layers were washed with 5% NaHCO₃ (2 x 5 ml), dried (MgSO₄) and evaporated to afford 1.29 g (93%) of 7d, m.p.107-108°C; ¹H NMR (CDCl₃) δ : 11.32 (d, 1H, J = 13.5 Hz, NH), 8.35 (d, 1H, J = 13.5 Hz, HC=C), 7.23 (m, 1H, ArH), 6.98 (ddd, 1H, J = 9.1, 4.1 and 1.9 Hz, ArH), 5.20 (d, 2H, J = 2.0 Hz, CH₂OAc), 4.31 (q, 2H, J = 7.0 Hz, CH₂), 4.25 (q, 2H, J = 7.0 Hz, CH₂), 2.20 (s, 3H, CH₃CO), 1.37 (t, 3H, J = 7.0 Hz, CH₃) 1.33 (t, 3H, J = 7.0 Hz, CH₃); IR (CHCl₃) 2910, 1680, 1640, 1600, 1490, 1370, 1220, 1180, 1110, 795; Anal. Calcd. for C₁₇H₁₉F₂NO₅: C, 54.99; H, 5.12; N, 3.77. Found: C, 54.96; H, 5.35; N, 3.41.

General procedure for the preparation of quinolone ethyl esters 8. The methylenemalonate 7 (3.00 mmol) was added to diphenyl ether (6 ml) and the mixture was heated at 220°C for 1-10 h. The solution was cooled to room temperature and the resulting precipitate was filtered off, washed with hexane, and dried. The crude ester 8 was used in the following reaction without further purification.

Ethyl 6,7-difluoro-1,4-dihydro-8-methylthio-4-oxoquinoline-3-carboxylate (8a). 520 mg, 58% (reaction time: 10 h), m.p.267-270°C; ¹H NMR (CDCl₃) δ : 9.46 (s, 1H, HC=C), 8.45 (t, 1H, J = 8.2 Hz, ArH), 4.74 (q, 2H, J = 8.2 Hz, CH₂), 2.64 (s, 3H, SCH₃), 1.57 (t, 3H, J = 7.2 Hz, CH₃); IR (nujol) 2920, 2840, 1680, 1650, 1590, 1450, 1370, 1260, 1230; Anal. Calcd. for C₁₃H₁₁F₂NO₃S: C, 52.17; H,3.68; N, 4.68. Found: C, 51.81; H, 3.67; N, 4.33.

Ethyl 6,7-difluoro-1,4-dihydro-8-methyl-4-oxoquinoline-3-carboxylate (8b). 481 mg, 60% (reaction time: 6 h), m.p.289-291°C; ¹H NMR (CDCl₃) δ : 9.34 (s, 1H, HC=C), 8.28 (t, 1H, J = 8.3 Hz, ArH), 4.69 (q, 2H, J = 7.2 Hz, CH₂), 2.75 (d, 2H, J = 2.3 Hz, CH₃), 1.53 (t, 3H, J = 7.2 Hz, CH₃); IR (nujol) 2920, 2850, 1700, 1630, 1590, 1480, 1460, 1380, 1300, 1190, 1110; Anal. Calcd. for C₁₃H₁₁F₂NO₃: C, 58.43; H, 4.12; N, 5.24. Found: C, 57.93; H, 4.10; N, 5.12.

Ethyl 8-acetoxymethyl-6,7-difluoro-1,4-dihydro-4-oxoquinoline-3-carboxylate (8c). 458 mg, 47% (reaction time: 1 h), m.p.245-250°C; ¹H NMR (CDCl₃) δ : 9.13 (s, 1H, HC=C), 8.12 (t, 1H, J = 8.7 Hz, ArH), 5.82 (d, 2H, J = 2.0 Hz, CH₂OAc), 4.51 (q, 2H, J = 7.0 Hz, CH₂), 2.11 (s, 3H, CH₃CO₂), 1.47 (t, 3H, J = 7.0 Hz, CH₃).

Ethyl 6-fluoro-7-(4-methyl-1-piperazinyl)-1,4-dihydro-8-methylthio-4-oxoquinoline-3carboxylate (8d). 0.28 ml (2.57 mmol) of N-methylpiperazine were added to a solution of 0.31 g (1.03 mmol) of ester 8a in 12 ml of DMSO. The resulting solution was heated at 110°C for 13 h.The solvent was removed by distillation in vacuo (0.1 mm Hg) and the residue was treated with Et₂O (10 ml). The precipitate was filtered off and purified by flash chromatography (CH₂Cl₂ / MeOH 7/1) to give 0.28 g (72%) of 8d, m.p.250-251°C (dec.); ¹H NMR (CF₃CO₂D) δ : 9.32 (s, 1H, HC=C), 8.27 (d, 1H, J = 11.4 Hz, ArH), 4.68 (q, 2H, J = 7.2 Hz, CH₂O), 4.1-3.3 (m, 8H, NCH₂), 3.15 (s, 3H, NCH₃), 2.39 (s, 3H, SCH₃), 1.53 (t, 3H, J = 7.2 Hz, CH₃); IR (nujol) 2910, 2840, 1690, 1600, 1580, 1530, 1450.

General procedure for the preparation of quinolones 1. A mixture of ester 8 (2.50 mmol), EtOH (22ml) and 2M NaOH (4.5 ml) was refluxed for 3-17 h. The solution was cooled to room temperature and acidified with 1% HCl. The resulting precipitate was filtered off, washed with H₂O and dried. The crude quinolone 1 was purified by recrystallization.

6,7-Difluoro-1,4-dihydro-8-methylthio-4-oxoquinoline-3-carboxylic acid (1a). 0.49 g, 72% (reaction time : 17 h), m.p.289-291°C (recrystallized from DMF); ¹H NMR (CF₃CO₂D) δ : 9.51(s, 1H, HC=C), 8.41(t, 1H, J = 8.7 Hz, ArH), 2.62 (s, 3H, SCH₃); IR (nujol) 3100, 2910, 2840, 1700, 1625, 1460, 1370, 1220, 1100, 910, 800; Anal. Calcd. for C₁₁H₇NO₃S: C, 48.71; H, 2.58; N, 5.17. Found C, 48.32; H, 2.49; N,4.96.

6,7-Difluoro-1,4-dihydro-8-methyl-4-oxoquinoline-3-carboxylic acid (1b). 0.53 g, 90% (reaction time : 6.3 h), m.p.>300°C (dec.) (recrystallized from DMF); ¹H NMR (CF₃CO₂D) δ : 9.44 (s, 1H, HC=C), 8.32 (t, 1H, J = 8.7 Hz, ArH), 2.79 (s, 3H, CH₃); IR (nujol) 3100, 3060, 2910, 2840, 1700, 1620, 1570, 1470, 1380, 1360, 1220, 1005, 985, 800; Anal. Calcd. for C₁₁H₇F₂NO₃: C, 55.23; H, 2.93; N, 5.86. Found C, 54.98; H, 2.66; N, 5.75.

6,7-Difluoro-8-hydroxymethyl-1,4-dihydro-4-oxoquinoline-3-carboxylic acid (1c). 0.54 g, 85% (reaction time: 3 h), m.p.267-270°C (recrystallized from Toluene/ DMF 20/1); ¹H NMR (CF₃CO₂D) δ : 9.60 (s, 1H, HC=C), 8.57 (t, 1H, J = 8.7 Hz, ArH), 5.70 (s, 2H, CH₂OH); IR (nujol) 3200, 3100, 3040, 2910, 2840, 1685, 1620, 1465, 1370, 1235, 1000, 1040, 1010, 970; Anal. Calcd. for C₁₁H₇F₂NO₄: C, 51.76; H, 2.74; N, 5.49. Found: C, 52.01; H, 2.82; N, 4.92.

6-Fluoro-7-(4-methyl-1-piperazinyl)-1,4-dihydro-8-methylthio-4-oxoquinoline-3-carboxylic acid hydrochloride (1d). 0.38 g (1 mmol) of ester 8d was dissolved in 30 ml of a (1:4) mixture of acetic acid and concentrated HCl. The solution was refluxed at 110°C for 18 h and after cooling to room temperature, the precipitate was filtered off, washed successively with H₂O and Et₂O and dried. The crude acid was recrystallized from DMF:toluene to yield 0.20 g (58%) of 1d, m.p.289-290°C; ¹H NMR (CF₃CO₂D) δ : 9.32 (s, 1H, HC=C), 8.28 (d, 1H, J = 11.5 Hz, ArH), 4.1-3.3 (m, 8H, NCH₂), 3.16 (s, 3H, NCH₃), 2.42 (s, 3H, SCH₃);

Ethylation of quinolone 8a.

<u>Method A:</u> To a solution of 229 mg (1 mmol) of **8a** in 4 ml of dry DMF was added 60 mg (1.5 mmol) of 60% NaH in oil. The solution was stirred for 15 min at room temperature. Then, 0.41 ml (5mmol) of EtI was added and the solution was heated at 60 °C for 3 h. H₂O (5 ml) was added and the mixture was extracted with Et₂O ($3 \times 10 \text{ ml}$). The combined organic layers were dried and evaporated. The crude product was purified by flash chromatography (Cl₂CH₂/hexane 1/1) to give 114 mg (35%) of N-ethylated quinolone **8e** and 137 mg (42%) of O-ethylated quinoline **9**.

<u>Method B:</u> A solution of $60 \ \mu l \ (0.41 \text{ mmol})$ of DEAD in 0.5 ml of dry THF was added dropwise to a solution of 100 mg (0.33 mmol) of quinolone ester **8a** and 0.1 g (0.41 mmol) of triphenylphosphine in 1 ml of dry THF. The solution was stirred overnight at room temperature. The solvent was removed in vacuo and Et₂O was added to the residue to precipitate triphenylphosphine oxide and diethyl hydrazinedicarboxylate which were filtered off. The filtrate was evaporated and purified by flash chromatography (CH₂Cl₂) to give 79 mg (73%) of **9**.

Ethyl 6,7-difluoro-1,4-dihydro-N-ethyl-8-methylthio-4-oxoquinoline-3-carboxylate (8e). m.p.44-46°C; ¹H NMR (CDCl₃) δ : 9.23 (s, 1H, HC=C), 7.91 (t, 1H, J = 8.5 Hz, ArH), 4.46 (q, 2H, J = 7.1 Hz, CH₂), 4.33 (q, 2H, J = 7.1 Hz, CH₂), 2.69 (d, 3H, J = 2.4 Hz, SCH₃), 1.53 (t, 3H, J = 7.1 Hz, CH₃), 1.44 (t, 3H, J = 7.1 Hz, CH₃); IR (CHCl₃) 2960, 1700, 1580, 1480, 1460, 1420, 1250, 1220, 1180, 1080, 1010, 880; Anal. Calcd. for C₁₅H₁₅F₂NO₃S: C, 55.09; H, 4.59; N, 4.28. Found: C, 54.83; H, 4.59; N, 4.04. **6,7-Difluoro-3-ethoxycarbonyl-4-ethoxy-8-methylthioquinoline** (9). m.p.113-115°C; ¹H NMR (CDCl₃) δ : 8.46 (s, 1H, ArH), 8.36 (t, 1H, J = 8.7 Hz, ArH), 4.87 (q, 2H, J = 7.1 Hz, CH₂), 4.41 (q, 2H, J = 7.1 Hz, CH₂), 2.48 (s, 3H, SCH₃), 1.47 (t, 3H, J = 7.1 Hz, CH₃), 1.42 (t, 3H, J = 7.1 Hz, CH₃); IR (CHCl₃) 2980, 1715, 1680, 1620, 1600, 1435, 1305, 1175, 1075, 870; MS *m/e* 327 (M⁺, 25), 282 (14), 255 (100), 212 (9), 182 (4), 151 (8), 113 (5); Anal. Calcd. for C₁₅H₁₅F₂NO₃S: C, 55.09; H, 4.59; N, 4.28. Found: C, 55.40; H, 4.73; N, 3.97.

Acknowledgement: Support of this research by Rhone-Poulenc Farma S.A.E. is greatfully acknowledged. Additionally, we thank Prof. F. Alcudia for determination of high-resolution mass spectra.

References and Notes

1.- For some reviews about structure-activity studies see: a) Chu, D.T.; Fernandes, P.B. Antimicrob. Agents Chemother. 1989, 33, 131. b) Matsumoto, J.I.; Nishimura, Y.; Minamida, A. Chem. Pharm. Bull. 1988, 36, 1223. c) Klopman, G.; Macina, O.; Levinson, M.E.; Rosenkranz, H.S. Antimicrob. Agents Chemother. 1987, 31, 1831. d) Fujita, T. The role of QSAR in drug design: fact or fantasy?, Jolles, G.; Wooldridge, K.R.H., Eds; Academic Press: New York, 1984. For some recent publications see: e) Remuzon, P.; Bouzard, D.; Cesare P.D.; Essiz, M.; Jacquet, J.P.; Kiechel, J.R.; Ledoussal, B.; Kessler R.E.; Fung-Tomc J. J. Med. Chem. 1991, 34, 29. f) Ohta, M.; Koga, H. J. Med. Chem.. 1991, 34, 131. g) Chu, D.T.; Nordeen, C.W.; Hardy, D.J.; Swanson, R.N.; Giardina, W.J.; Pernet, A.G.; Plattner, J.J. J. Med. Chem.. 1991, 34, 168. Kiely, J.S.; Hutt, M.P.; Culbertson, T.P.; Bucsh, R.A.; Worth, D.F.; Lesheski, L.E.; Gogliotti, R.D.; Sesnie, J.C.; Solomon, M.; Mich, T.F. J. Med. Chem.. 1991, 34, 656.

2.- a) Wentland, M.P. in *The New Generation of Quinolones;* Siporin, C., Heifetz, C.L., Domagala, J.M., Eds., Marcel Dekker: New York, **1990**. b) Andriole, V.T. *The Quinolones*, Academic Press: New York, **1988**.

3.- a) Hayakawa, I.; Hiramitsu, T.; Tanaka, Y. Chem. Pharm. Bull. 1984, 32, 4907. b) Koga, H.; Itoh, A.; Murayama, S.; Suzue, S.; Irikura, T. J. Med. Chem. 1980, 23, 1358. c) Albrecht R., Development of antibacterial agents of the nalidixic acid type Prog. Drug. Res. 1977, 21, 9-104.

4.- For a recent review on directed ortho metalation see: Snieckus, V. Chem. Rev. 1990, 90, 879.

5.- a) Cho, I.S.; Gong L.; Muchowski, J.M. J. Org. Chem. 1991, 56, 7288. b) Clark, R.D.; Caroon, J.M. J. Org. Chem. 1982, 47, 2804. c) Muchowski, J.M.; Venuti M.C. J. Org. Chem. 1980, 45, 4798. d) Fuhrer, W.; Gschwend, H.W. J. Org. Chem. 1979, 44, 1133.

6.- a) Bridges, A.J.; Patt, W.C.; Stickney, T.M. J. Org. Chem. 1990, 55, 773. b) Gschwend, H.W.; Hamdan, A. J. Org. Chem. 1982, 47, 3652.

7.- It should be noted that deprotonation of 3 must be performed at very low temperature (-78°C) in order to avoid the elimination of the initially formed metalated species 4 into its corresponding benzyne.

8.- a) Wittig, G.; Harborth, G. Chem. Ber. 1944, 77, 306. b) Glaze, W.H.; Selman, C.M.; Ball, A.L.; Bray, L.E. J. Org. Chem. 1969, 34, 641.

9.- No substitution at all was detected when quinolones 1 were treated with N-methyl piperazine in DMSO at 110-150°C. Under these conditions a slow decarboxylation reaction was observed.

10.- By contrast C-8 unsubstituted quinolones gave exclusively the N-ethylated product after alkylation with K₂CO₃/IEt in DMF. See for instance ref. 3b and Domagala, J.M.; Hanna, L.D.; Heifetz, C.L.; Hutt, M.P.; Mich, T.F.; Sanchez, J.P.; Solomon, M. J. Med. Chem. **1986**, 29, 394.